22 research outputs found

    Detection of Grape Clusters in Images using Convolutional Neural Network

    Get PDF
    Convolutional Neural Networks and Deep Learning have revolutionized every field since their inception. Agriculture has also been reaping the fruits of developments in mentioned fields. Technology is being revolutionized to increase yield, save water wastage, take care of diseased weeds, and also increase the profit of farmers. Grapes are among the highest profit-yielding and important fruit related to the juice industry. Pakistan being an agricultural country, can widely benefit by cultivating and improving grapes per hectare yield. The biggest challenge in harvesting grapes to date is to detect their cluster successfully; many approaches tend to answer this problem by harvest and sort technique where the foreign objects are separated later from grapes after harvesting them using an automatic harvester. Currently available systems are trained on data that is from developed or grape-producing countries, thus showing data biases when used at any new location thus it gives rise to a need of creating a dataset from scratch to verify the results of research. Grape is available in different sizes, colors, seed sizes, and shapes which makes its detection, through simple Computer vision, even more challenging. This research addresses this issue by bringing the solution to this problem by using CNN and Neural Networks using the newly created dataset from local farms as the other research and the methods used don’t address issues faced locally by the farmers. YOLO has been selected to be trained on the locally collected dataset of grapes

    Analysis of rule-based and shallow statistical models for COVID-19 cough detection for a preliminary diagnosis

    Get PDF
    Coronavirus pandemic that has spread all over the world, is one of its kind in the recent past, that has mobilized researchers in areas such as (not limited to) pre-screening solutions, contact tracing, vaccine developments, and crowd estimation. Pre-screening using symptoms identification, cough classification, and contact tracing mobile applications gained significant popularity during the initial outbreak of the pandemic. Audio recordings of coughing individuals are one of the sources that can help in the pre-screening of COVID-19 patients. This research focuses on quantitative analysis of covid cough classification using audio recordings of coughing individuals. For analysis, we used three different publicly available datasets i.e., COUGHVID, NoCoCoDa, and a self-collected dataset through a web application. We observed that wet cough has more correlation with covid cough as opposed to dry cough. However, the classification model trained with wet and dry coughs, both, has similar test performance as that of the model trained with wet cough samples only. We conclude that audio-signal recordings of coughing individuals have the potential as a pre-screening test for COVID-19

    Learning fruit class from short wave near infrared spectral features, an AI approach towards determining fruit type

    Get PDF
    This paper analyzes the potential of using shortwave NIRS (near-infrared spectroscopy) for fruit classification problems. The research focuses on O-H and C-H overtone features of fruit and its correlation with NIRS and therefore opens a new dimension of fruit classification problems using NIRS. Eleven fruits, which include apple, cherry, hass, kiwi, grapes, mango, melon, orange, loquat, plum, and apricot, were used in this study to cover physical characteristics such as peel thinness, pulp, seed thickness, and size. NIR spectral data is collected using the industry-standard F-750 fruit quality meter (wavelength range 300-1100nm) for all fruit mentioned above. Different shallow machine learning architectures were trained to classify fruits using spectral feature vectors. At first, using 83 features vectors within the range of 725-975nm (3nm-resolution) and then using only four features of wavelength 770nm, 840nm, 910nm, and 960nm (corresponding to O-H and C-H overtone features). For the 83 spectral features range as an input, the QDA classifier achieved a cross-validation accuracy of 100% and a test data accuracy of 93.02%. For the four features vector as an input, the QDA classifier achieved a cross-validation accuracy of 97.1% and test data accuracy of 90.38%. The results demonstrate that fruit classification is mainly a function of absorptivity of short wave NIR radiation primarily with respect to O-H and C-H overtones features. An LED-based device mainly having 770nm, 840nm, 910nm, and 960nm range LEDs can be used in applications where automation in fruit classification is required

    New FxLMAT-Based Algorithms for Active Control of Impulsive Noise

    Get PDF
    In the presence of non-Gaussian impulsive noise (IN) with a heavy tail, active noise control (ANC) algorithms often encounter stability problems. While adaptive filters based on the higher-order error power principle have shown improved filtering capability compared to the least mean square family algorithms for IN, however, the performance of the filtered-x least mean absolute third (FxLMAT) algorithm tends to degrade under high impulses. To address this issue, this paper proposes three modifications to enhance the performance of the FxLMAT algorithm for IN. To improve stability, the first alteration i.e. variable step size FxLMAT (VSSFxLMAT)algorithm is suggested that incorporates the energy of input and error signal but has slow convergence. To improve its convergence, the second modification i.e. filtered x robust normalized least mean absolute third (FxRNLMAT) algorithm is presented but still lacks robustness. Therefore, a third modification i.e. modified filtered-x RNLMAT (MFxRNLMAT) is devised, which is relatively stable when encountered with high impulsive noise. With comparable computational complexity, the proposed MFxRNLMAT algorithm gives better robustness and convergence speed than all variants of the filtered-x least cos hyperbolic algorithm, and filtered-x least mean square algorithm

    Learning pavement surface condition ratings through visual cues using a deep learning classification approach.

    Get PDF
    Pavement surface condition rating is an essential part of road infrastructure maintenance and asset management, and it is performed manually by the data analyst. The manual rating requires cognitive skills built through training and experience, which is quantitatively challenging and timeconsuming. This paper first analyses the complexity of the current manual visual rating system. This paper then investigates the suitability and robustness of a state-of-the-art convolutional neural network (CNN) classifier to automate the pavement surface condition index (PSCI) system used to rate pavement surfaces in Ireland. The dataset contains 3735 images of flexible asphalt pavements from Irish urban and rural environments taken from a video camera mounted in front of a van. The PSCI ratings were applied by experts using a scale of 1-10 to indicate surface conditions. The classification models are evaluated for different input pre-processing variations, image size, learning techniques, and the number of classes. Using 10 PSCI classes, the best classifier achieved a precision of 57% and a recall of 58%. Adjacent combination of classes (e.g., ratings 1 and 2 combined into a single class) to form a 5-class problem produced a classifier with a precision of 70% and recall of 77%. Given the complexity of the problem, classification using CNN holds promise as a first step towards an automated ranking system

    A W-Shaped Convolutional Network for Robust Crop and Weed Classification in Agriculture

    Get PDF
    Agricultural image and vision computing are significantly different from other object classification-based methods because two base classes in agriculture, crops and weeds, have many common traits. Efficient crop, weeds, and soil classification are required to perform autonomous (spraying, harvesting, etc.) activities in agricultural fields. In a three-class (crop-weed-background) agricultural classification scenario, it is usually easier to accurately classify the background class than the crop and weed classes because the background class appears significantly different feature-wise than the crop and weed classes. However, robustly distinguishing between the crop and weed classes is challenging because their appearance features generally look very similar. To address this problem, we propose a framework based on a convolutional W-shaped network with two encoder-decoder structures of different sizes. The first encoder-decoder structure differentiates between background and vegetation (crop and weed), and the second encoder-decoder structure learns discriminating features to classify crop and weed classes efficiently. The proposed W network is generalizable for different crop types. The effectiveness of the proposed network is demonstrated on two crop datasets – a tobacco dataset and a sesame dataset, both collected in this study and made available publicly online for use by the community – by evaluating and comparing the performance with existing related methods. The proposed method consistently outperforms existing related methods on both datasets

    Determination of Alpha-i Antitrypsin Genetic Deficiency in Duodenal Ulcer by Polymerase Chain Reaction

    Get PDF
    Objective: To confirm alpha-I-AT deficiency status in duodenal ulcer using a combination of PCR and restricted enzyme digestion. Methods: Fifty patients with endoscopically proven duodenal ulcer and hundred controls with no signs of the disease were included. Alpha-i-AT phenotypes were confirmed by polymerase chain reaction followed by restriction enzyme digestion. Results:Alpha-I-AT concentration in duodenal ulcer patients showed a mean value of 2.12 ± 0.11g/1 (range: 0.52-3.95 g/1, p Conclusion: Alpha-1 AT deficiency was found in 10% of duodenal ulcer patients. DNA analysis more accurately resolved the phenotypes as S and Z mutations (JPMA 52:545; 2002)

    Analysis of Human Gait Cycle with Body Equilibrium based on leg Orientation

    Get PDF
    Gait analysis identifies the posture during movement in order to provide the correct actions for a normal gait. A person\u27s gait may differ from others and can be recognized by specific patterns. Healthy individuals exhibit normal gait patterns, while lower limb amputees exhibit abnormal gait patterns. To better understand the pitfalls of gait, it is imperative to develop systems capable of capturing the gait patterns of healthy individuals. The main objective of this research was to introduce a new concept in gait analysis by computing the static and dynamic equilibrium in a real-world environment. A relationship was also presented among the parameters stated as static \& dynamic equilibrium, speed, and body states. A sensing unit was installed on the designed metal-based leg mounting assembly on the lateral side of the leg. An algorithm was proposed based on two variables: the position of the leg in space and the angle of the knee joint measured by an IMU sensor and a rotary encoder. It was acceptable to satisfy the static conditions when the body was in a fixed position and orientation, whether lying down or standing. While walking and running, the orientation is determined by the position and knee angle variables, which fulfill the dynamic condition. High speed reveals a rapid change in orientation, while slow speed reveals a slow change in orientation. The proposed encoder-based feedback system successfully determined the flexion at 47∘^\circ, extension at 153∘^\circ, and all seven gait cycle phases were recognized within this range of motion. Body equilibrium facilitates individuals when they are at risk of falling or slipping

    Deep Learning Framework For Intelligent Pavement Condition Rating: A direct classification approach for regional and local roads

    Get PDF
    Transport authorities rely on pavement characteristics to determine a pavement condition rating index. However, manually computing ratings can be a tedious, subjective, time-consuming, and training-intensive process. This paper presents a deep-learning framework for automatically rating the condition of rural road pavements using digital images captured from a dashboard-mounted camera. The framework includes pavement segmentation, data cleaning, image cropping and resizing, and pavement condition rating classification. A dataset of images, captured from diverse roads in Ireland and rated by two expert raters using the pavement surface condition index (PSCI) scale, was created. Deep-learning models were developed to perform pavement segmentation and condition rating classification. The automated PSCI rating achieved an average Cohen Kappa score and F1-score of 0.9 and 0.85, respectively, across 1–10 rating classes on an independent test set. The incorporation of unique image augmentation during training enabled the models to exhibit increased robustness against variations in background and clutter
    corecore